Mrs. Hillon glanced back at the twins smiling like two little angels on the back seat, and then settled herself contentedly against the cushions.

"For once, Fred," she said, "we've started on time. Now, if the car will only behave, we'll get to Aunt Eliza's when we said we would.

"Fred!" she exclaimed, as a car swung out of line and her husband averted a smash only by a quick twist of the wheel. "Why didn't you blow your horn? We almost hit that car.

"Think I don't know it?" Hillon grunted. "I pressed the button, but the confounded thing didn't blow. Something must be wrong with it."

"Try it again," she suggested.

Hillon obediently pressed the button for a test, and the horn responded instantly. In fact, it responded too well; it kept blowing for nearly a second after he'd taken his hand off.

"There!" she said triumphantly. "You just forgot to blow it, that's all."

Fred merely grunted. Mile after mile passed under the wheels without any further occasion to use the warning signal and then, as they approached the crossing near the Model Garage, the tall, hard-boiled cop directing the Sunday traffic at that point majestically held up his hand.

Fred slammed on his brakes and as the car rolled to a stop the horn let go with a long and disconcerting blast.

The cop glared angrily, and deliberately turned his back as he motioned to the traffic flowing in the other direction.

"Whatever did you do that for, Fred?" Mrs. Hillon wailed. "You'll make the officer angry and then he'll give you a ticket or something."

"The blasted horn blew itself," Fred muttered. "I didn't have my hand within a mile of it." The horn punctuated his remarks with three short blasts.

An ominous frown gathering on his face, the cop held up traffic in both directions and swaggered over to the Hillon's car.

"Say, how do you get that way, mister?" he growled. "In a hurry are you? Well I'll show you. Lemme see your license."

Hillon started to protest, shrugged his shoulders hopelessly, and reached for his pocketbook.

While he was fumbling with the buttons of his overcoat and the cop was digging for his summons pad and pencil, the horn let loose upon what promised to be the nonstop record for horn blowing.

"Hey! Shut that blasted thing off!" roared the cop.

"Shut it off yourself, I can't," Hillon shouted despairingly, as he punched and pulled at the horn button. "So it ain't your fault, eh?" boomed the cop as his gnarled face broke into a twisted grin. "All right, buddy, shuffle along to that garage and have it fixed."

Mrs. Hillon smiled gratefully, and the car drove off with the horn still sounding its rasping blare.

Gus Wilson, veteran auto mechanic of the Model Garage, took in the situation at once as the prolonged honking brought him outside. He fished a screwdriver from a pocket in his overalls and disconnected the wire at the horn.

In the intensified silence that followed, Mrs. Hillon piped up. "Isn't that lucky, Fred? Cousin Harriet lives just a little way down the road. I'll take the children and pay her a visit while you get the horn fixed, and I'll phone Aunt Eliza that we'll be late—as usual!"

Gus pulled the horn-button assembly apart and found the trouble. The wire had come loose and was resting in such a way that the bare end made contact with the metal of the steering-wheel post at the slightest vibration.

"Gosh!" exclaimed Hillon, as he glared at the loose wire end. "I wish that just once we could start out and get where we're going without some wire giving trouble. Last week it was the headlights. The time before that it was the stop light. I wonder what it will be the next time?"

"Lots of old cars get that way," Gus observed. "Trouble is, the owners don't realize just what makes a good electrical connection, and they don't know where to look for trouble before it actually breaks."

"Of course, if a car owner always fixed a bad connection right when it did go back on him, after a while his troubles would be over because all the bad connections would show up and be fixed for good. But usually, when a light goes dead or something like this horn trouble happens, the wire is put back any old way, and sooner or later the trouble shows up again in the same place."

"Look here," Gus suggested, tapping the horn-button assembly with his screwdriver. "The end of this wire is supposed to be held in place by this spring connection. That's fine if the spring is strong, but this one is so weak that the vibration gradually worked the end of the wire loose and it dropped out. If I put it back the way it is, you'll have the same trouble again in a few months. I'll tighten the spring first, and then I'll bet it won't happen again while you have the car."

"I can understand that, easy enough," Hillon agreed, but last time, when one of the headlights went out, I couldn't find any loose wire. (Continued on page 131)
I took the bulb out and put it back, and the light came on again. I guess it was just dirt under the spring contact."

"It was dirt, all right," Gus explained, "but not the kind of dirt that gets in from the outside. The dirt that did that was corrosion right on the surface of the bulb contacts.

"I always thought a soldered joint was the best of all," protested Hilton.

"It is," Gus agreed. "If you twist two wires together and solder them to the joint, no matter how much vibration will ever cause that joint to let go."

"But this isn't a soldered joint," Gus went on, pulling open one of the headlights and removing the bulb. "The wire from the filament is soldered to this brass tab on the base of the bulb, but the socket contact presses against a lump of solder instead of against the brass. In time, corrosion on the surface of the socket will break the flow of current and cause enough resistance in the circuit so that the light won't be quite as bright as it ought to be."

"Back in the early days of radio, vacuum-tube sockets were made just like this, only the spring contacts pressed against a lump of solder on the end of each prong—and if you didn't take the tubes out and sandpaper the prongs once in a while, they got to sounding like a lot of hens scratching on a tin roof.

"You won't find a single radio tube socket made that way today. The contact is always against the side of the prong, and until the auto-lamp makers follow in the radio makers' footsteps, you'd better find a good supplier and have every bulb on your car out of its socket at least once every few months and sandpaper the contacts."

"I'll certainly do that hereafter," Hilton decided. "That will eliminate a lot of my troubles."

"A large part of 'em, at any rate," Gus agreed, "but not all. Remember, perfect connections won't make current flow if there's a break in the line somewhere else. And it won't flow if the switch is closed if there's any shorter path that it can take by way of a short circuit."

"Vibration is the enemy of every electrical wire and you want to let it be," Gus went on. "I'll bet we can find several places where it'll only be a question of time before a wire will fray through and either cut off the current or cause a short circuit. Leave you with a very unhappy showing."

"Show me," Hilton ordered, "and Eliza can wait!"

"All right," Gus agreed, pulling up the floor boards. Let's start with the storage battery. Here's one place where you're more likely to have trouble from corrosion than from vibration—unless the battery gets loose in the box, and then you'll have a bad combination of both. Take a look at that ground cable."

"Pretty nasty looking, isn't it?" Hilton observed. "I suppose the acid from the battery ate away the strands like that. Still, there seems to be a lot of the cable that is all right."

"I'll do for three or four months," Gus decided, "but I wouldn't let it go longer. By that time enough of the strands will be eaten away to increase the resistance and cause hard starting, and if you forget about it, you'll likely find yourself stuck on the road some night with a dead battery and no lights either."

"The starter cable looks all right, anyway," remarked Hilton. "I don't see much corrosion there."

"Looks don't mean much," Gus grumbled. "Sometimes the corrosion sneaks in under the insulation. We can tell easy enough. If the cable still is in good

(Continued from page 32)

Is Your Job Safe?

Just as the gasoline engine changed the face of transportation in America, so has the Diesel engine changed the face of industry. Diesel engines are replacing steam and gasoline engines in power plants, motor trucks and buses, locomotives, ships, and marine, industrial, and aeronautical equipment.

What This Field Offers You

Diesel engines are developing new fields of employment. They are designed to meet the needs of industry for more reliable, more economical, more efficient power. This book contains information on all phases of the Diesel engine field, including: Diesel engine design, Diesel engine operation, Diesel engine maintenance, Diesel engine service, Diesel engine manufacture, Diesel engine repair, Diesel engine testing, Diesel engine erection, Diesel engine installation, Diesel engine inspection, Diesel engine testing, Diesel engine diagnosis, Diesel engine troubleshooting.

Now is your chance to get into a big new industry and grow with it to an important position. Today there is practically no competition in the Diesel engine field, but the use of Diesel engines will result in keen competition for jobs after a few years. If you start your training now and get established in this field, you need not worry about competition.

American School, Dept. D-446, Drexel Avenue at 58th Street, Chicago, Illinois
CHECK YOUR WIRING
FOR CARE-FREE DRIVING
(Continued from page 132)

shape, it will be strong and stiff. If it is badly corroded inside, where you can't see it, it will bend easily at that point. It may even break off in your fingers.

Gus reached down and gave the cable a strong pull first one way, then the other. No weakness was apparent.

Rapidly they went over all the other connections, one by one. The wire to the stoplight switch had broken loose from its moorings and was dangling in such a way that it was rubbing against the frame and the insulation was slowly wearing away; one of the headlight wires that ran over the edge of the radiator core, and the wire leading to the generator cut-out was working loose.

"HERE'S a little point that is worth remembering," Gus pointed out, as he fished out his screw driver again. "When you find a loose connection like this, don't tighten it. Remove it and scrape it clean with your knife or a bit of sandpaper, then clamp it down tight and it'll be as good as new. A little grease doesn't hurt it, too. It's good to keep the wiring system in dependable shape. With a little sandpaper, a screw driver, a pair of pliers, and a roll of tape, most anyone can stop this sort of thing before it starts.

"The main thing is to take the time out to give the wiring a thorough check and when you see something showing signs of wear, fix it right then and there and fix it right.

"These stitches in time," continued Gus, as he straightened up after replacing the floor boards, "will save your temper because you won't be held up like this and some day it might keep you from running into an expensive repair bill.

"Aren't you nearly ready?" Mrs. Hilton greeted them as she walked in from the twins.

"All finished," Hilton replied. "Hop in and we'll get going."

"I guess this is deserted to be a noisy day," he chuckled in an undertone to the garageman, as he handed him a bill. "We listened to that blared horn all evening. We'll have to listen to Aunt Eliza most of the afternoon."

MAJOR CHANGES TO MARK CARS OF NEXT DECADE

Ten years from now, motorists will drive six-wheeled, tear-shaped, streamline cars which have air conditioning, rear-end motors, self-starting equipment, automatic steering and hydraulic brakes, according to Austin M. Wolf, prominent automotive engineer. Present body styles will give way to the most efficient streamline shape, he believes, and air-conditioning apparatus will cool engine and brakes as well as maintain a comfortable temperature in the car interior. The 1946 models will have front tires, two front and four rear. Engines will be located in the rear over the driving wheels. In cold weather, cars will start with light, volatile fuel from one tank and then automatically switch over to regular gas when the engine warms up. Red and green lights will replace most dashboard instruments, the red lights flashing to indicate trouble in the ignition, lubrication, or cooling systems.

SYNTHETIC TUBES TAKE BRINE FROM SEA WATER

British scientists have just perfected a new process for converting sea water into fresh water, purely by this method. Sea water is pumped through a series of synthetic-resin tubes containing chemicals which absorb the metallic, alkaline, and other forming impurities. Although safe to drink, the treated water has a slightly unpleasant taste but will be suitable for many industrial purposes.